Recursivité

PCSI/PTSI

Pour faire ce TP, on utilisera Python Tutor et prendra soin du bien simuler le code.

I Approche descendante

Implémentez les fonctions suivantes

Exercice 1. Fonction d'Ackermann

La fonction d'Ackermann est une fonction à deux paramètres définie par récurrence comme ceci :

$$A(m,n) = \begin{cases} n+1 & \text{si } m=0 \\ A(m-1,1) & \text{si } m>0 \text{ et } n=0 \\ A(m-1,A(m,n-1)) & \text{si } m>0 \text{ et } n>0. \end{cases}$$

Exercice 2. Fonction 91 de McCarthy

La fonction de McCarthy est une fonction définie par récurrence comme ceci :

$$f(n) = \begin{cases} n - 10 & \text{si } n > 100 \\ f(f(n+11)) & \text{sinon.} \end{cases}$$

II Fonctions récursives

Exercice 3. Suite récurrente simple

On définit $u_0 = 12$ et $u_{n+1} = \sqrt{u_n + 1}$.

Écrire une fonction récursive qui prend en entrée un entier $n \ge 0$ et calcule la valeur de u_n .

Exercice 4. Suite de Syracuse

La suite de Syracuse est définie par récurrence :

$$S_{n+1} = \begin{cases} \frac{S_n}{2} & \text{si } S_n \text{ est pair,} \\ 3S_n + 1 & \text{si } S_n \text{ est impair.} \end{cases}$$

Écrire une fonction récursive qui prend en entrée un entier $s \ge 1$ et calcule le premier entier $n \ge 0$ tel que $S_n = 1$.

Exercice 5. Maximum

Écrire une fonction récursive qui prend en entrée une liste l d'entiers positifs et calcule le maximum de la liste. Le maximum sera None si la liste est vide.

Exercice 6. Somme

Écrire une fonction récursive qui prend en entrée une liste l d'entiers et calcule la somme des éléments de la liste.

Exercice 7. Recherche linéaire

Écrire une fonction récursive qui prend en entrée une liste l d'entiers, un entier x et renvoie l'indice i auquel se trouve x dans l et -1 sinon.

Exercice 8. Fibonnacci

On définit
$$F_0 = 0$$
, $F_1 = 1$ et $F_{n+2} = F_{n+1} + F_n$.

Écrire une fonction récursive qui prend en entrée un entier $n \ge 0$ et calcule la valeur de F_n .

Testez la fonction sur de petites valeurs, puis augmentez petit à petit. Améliorer la fonction pour pouvoir calculer F_100 .

Exercice 9. Coefficient Binomial

On utilisera **exclusivement** la définition du binôme par la formule de récurrence du triangle de Pascal :

$$\binom{n}{k} = \begin{cases} 0 & \text{si } k > n \\ 1 & \text{si } k = 0 \text{ ou } k = n \\ \binom{n-1}{k} + \binom{n-1}{k-1} & \text{sinon.} \end{cases}$$

Écrire une fonction récursive qui prend en entrée deux entiers n et k, et qui renvoie $\binom{n}{k}$.