
KNN vs. les Sup ITC 2025/2026

KNN vs. les Sup
On utilisera pour ce TP Spyder. Les données à exploiter dans ce TP sont disponible dans l’archive
donnees_knn.zip.

On y trouvera 3 fichiers.
1. data.csv contient les données vectorisées de tous les projets musiques depuis 2023.
2. data_training.csv contient une sélection de 80% des données bien reparties selon les éti-

quettes.
3. data_test.csv contient les 20% restant.

On cherche ici à attribuer une note automatiquement à un projet musique. On choisi un approche
par apprentissage supervisée. Les données sont étiquetées par la note sur 20 arrondi à l’entier le plus
proche. Ce qui fait un total de 21 étiquettes.

Les projets on été préalablement transformé en vecteurs deℝ154 ou, pour chacune des 14 questions du
projet, on a compté le nombre d’utilisations de 11 éléments structurels du code (if, for, while, listes,
tuple, accès, opérations, comparaisons, return, appels, liste en compréhension). On a concaténer les
11 valeurs entières de chacune des 14 questions, puis on a normalisé le vecteur.

Ainsi les fichiers de données contiennent une ligne par projet et sur chaque ligne, séparés par des
virgules :

1. Un identifiant unique,
2. L’étiquette de la donnée (note arrondie),
3. 154 floattant correspondant au projet vectorisé.

I Fonctions auxiliaires

Il s’agit d’abord d’importer les données dans le programme sous la forme de deux listes :
1. La liste des projets vectorisés (tuple de 154 flottants).
2. La liste des étiquettes de chaque projet.

De telle manière à ce que, pour le projet d’identifiant i, le projet vectorisé soit à l’indice i de data et
son étiquette à l’indice i de labels.

On notera vec le type tuple de 154 flottants.

Exercice 1. Chargement des données.

Écrire une fonction chargement(chemin : str) -> tuple[list, list] qui prend en entrée le chemin
d’un fichier csv contenant des données et qui renvoie les deux listes décritent ci-dessus.

On utilisera float(s) et int(s) pour convertir en flottant une chaîne de caractère représentant un
flottant ou un entier. On utilisera s.split(',') pour séparer une chaîne de caractère selon les virgules
et obtenir la liste des chaînes entre chaque virgule.

N.B. : cliquer ici.

Exercice 2. Distances

On aura besoin de la distance entre deux vecteurs de ℝ154.

Lycée Gustave Eiffel Bordeaux 1 itc-eiffel@sjaziri.fr

https://itc-eiffel.sjaziri.fr/spe/tp/donnees_knn.zip
https://itc-eiffel.sjaziri.fr/spe/poly/introduction.html#org720e1b8

KNN vs. les Sup ITC 2025/2026

Implémenter une fonction distance(v1 : vec, v2 : vec) -> float qui prend deux tuples et ren-
voie la distance euclidienne de ℝ154 entre ces deux vecteurs.

II KNN

L’algorithme KNN décrit ici décrit comme ceci :

def knn(k, strategie, donnees, etiquettes, vecteur):

kpp = plus_proches(k, donnees, vecteur)

return strategie(kpp, etiquettes)

L’algorithme prend en entrée :
1. k, un entier qui détermine le nombre de plus proche voisins à considérer ;
2. strategie, une fonction qui prend la liste des indices des k plus proches voisins et de leur

distance ainsi que la liste des étiquettes et renvoie une étiquette ;
3. donnees, les projets vectorisés ;
4. etiquettes, les étiquettes des données ;
5. vecteur, le vecteur à étiqueter.

On va implémenter, la fonction plus_proche qui renvoie les k plus proches voisins de vecteur et trois
stratégies pour choisir l’étiquette.

Exercice 3. Plus proche

Implémenter une fonction plus_proche(k: int, donnees: list, vecteur : vec) -> list) qui prend
en entrée un entier k, une liste de vecteurs et un vecteur de l’espace et renvoie la liste des couples
[(i1,d1), ⋯, (ik,dk)] avec i1, ⋯, ik les indices des k plus proches voisins, par ordre de distance
et d1, ⋯, dk les distances de vec à chacun de ses voisins.

On pourra utiliser float("inf") pour représenter l’infini.

Exercice 4. Stratégie majoritaire

Implémenter une fonction majo(kpp: list], etiquettes: list) -> int qui renvoie l’étiquette ma-
joritaire par rapport aux étiquettes des éléments de kpp. On utilisera un simple décompte des occur-
rences de chaque étiquettes et en cas d’égalité on prendra l’étiquette la plus grande.

Exercice 5. Stratégie moyenne

Implémenter une fonction moyenne(kpp: list], etiquettes: list) -> int qui renvoie lamoyenne
des étiquettes de kpp arrondie à l’entier le plus proche. On utilisera round(f) pour arrondir le flottant
f à l’entier le plus proche.

Exercice 6. Stratégie moyenne pondérée

Implémenter une fonction moyenne_ponderee(kpp: list], etiquettes: list) -> int qui renvoie
la moyenne, pondérée par la distance des voisins, des étiquettes de kpp arrondie à l’entier le plus
proche. On utilisera round(f) pour arrondir le flottant f à l’entier le plus proche.

Lycée Gustave Eiffel Bordeaux 2 itc-eiffel@sjaziri.fr

https://itc-eiffel.sjaziri.fr/spe/poly/ia.pdf

KNN vs. les Sup ITC 2025/2026

III Analyse des résultats

Onpeut dors et déjà tester notre notation automatique sur diverses stratégies, en utilisant par exemple
un projet des données de tests.

data_tr, labels_tr = chargement(' data_tra in ing . csv ')
data_test, labels_test = chargement(' data_test . csv ')
k = 5

itest = 3

res_ia = knn(k, majo, data_tr, labels_tr, data_test[itest])

res_reel = labels_test[itest]

On peut ainsi commencer à comparer les résultats suivants les différentes valeurs de k et les diffé-
rentes stratégies.

Pour choisir lesmeilleurs valeurs, on va construire lesmatrices de confusions pour chaque 0 < k < 30

et les différentes stratégies, calculer les taux d’erreurs et l’erreur quadratique moyenne.

Exercice 7. Matrice de confusion

Implémenter une fonction confusion(k, strategie, d_tr, l_tr, d_test, l_test) qui prend en
entrée, une entier k, les données d’entraînements d_tr, les étiquettes des données entraînements l_tr,
les données de test d_test et les étiquettes des données de test l_test ; et qui renvoie la matrice de
confusion 21 × 21 de l’algorithme.

Exercice 8. Taux d’erreur empirique

Implémenter une fonction taux_erreur_empirique(matrice) qui prend en entrée une matrice de
confusion et renvoie le taux d’erreur.

Exercice 9. Erreur quadratique moyenne

Implémenter une fonction erreur_quad_moyenne(matrice) qui prend en entrée unematrice de confu-
sion et renvoie l’erreur quadratique moyenne calculée sur la matrice de confusion.

On utilisera la formule suivante adaptée au cadre de la classification mais avec des étiquettes quan-
titative :

1
𝑚

𝑛

∑
𝑖=0

𝑛

∑
𝑗=0

𝑚𝑖,𝑗(𝑖 − 𝑗)2

Avec 𝑛 la dimension de la matrice (nombre d’étiquettes, ici 21), et 𝑚 le nombre de données d’entraî-
nement qu’on peut obtenir directement depuis la matrice en sommant ses coefficients.

Exercice 10. Statistiques

Calculez les taux d’erreurs empiriques et erreurs quadratique moyenne pour toutes les valeurs de k

entre 1 et 30 exclus, et cela pour les trois stratégies. Quelle est le meilleur choix de k et la meilleur
stratégie ?

Lycée Gustave Eiffel Bordeaux 3 itc-eiffel@sjaziri.fr

KNN vs. les Sup ITC 2025/2026

IV Sélection préalables des données

Dans cette section on s’intéresse à l’extraction d’un échantillon d’entraînement et d’un échantillon de
test depuis l’ensemble des données initiales. On fait le choix de ne pas sélectionner 80% des données
au hasard mais de d’abord réunir les données par étiquettes, puis de sélectionner 80% des données
dans chaque groupe. Ainsi les données de test et d’entraînement contiennent bien assez de données
de chaque étiquettes différentes.

Exercice 11. Tri à bulles

La sélection des 80% de données sera aléatoire. Les indices choisis seront donnés dans un ordre,
lui aussi, aléatoire. Pour répartir efficacement les données une fois la sélection faîte, il faudra trier
les indices choisis. On peut se contenter ici d’un tri à bulle en place vu la quantité de données par
étiquettes.

Le tri à bulle en place consiste à parcourir les éléments de la liste jusqu’à l’avant dernier et d’échanger
l’élément visité avec le suivant s’il est plus grand. Puis à réitérer ce parcours jusqu’à l’élément d’indice
n-3, puis n-4, et ainsi de suite jusqu’à n-(n-1) (plus d’information ici).

Implémenter une fonction tri_bulles(l : list) -> None qui prend en entrée une liste trie sont
contenu par effet de bord, sans rien renvoyer.

Exercice 12. Sélection aléatoire

Implémenter une fonction sélection(l: list, p: int) -> tuple[list, list] qui prend en entrée
une liste d’éléments, l, et un entier, 0 <<= p <<= 100 et qui renvoie deux listes, select et nonselect tel
que select contient p% des éléments de l (le nombre exact d’éléments de select sera ⌊𝚙⋅𝚕𝚎𝚗(𝚕)100 ⌋), et
nonselect contient ceux qui ne sont pas dans select.

Pour ce faire on pourra générer aléatoire le bon nombre d’indices de l aléatoire à l’aide de la fonction
sample du module random (documentation). Puis, après avoir trié cette liste d’indices aléatoire avec
tri_bulles, on peut répartir les éléments de l dans les deux listes en un parcours.

Exercice 13. GROUP BY label

Implémenter une fonction groupby(donnees: list, etiquettes: list) -> dict[int, list]

qui prend en entrée les données et les étiquettes à exploiter et renvoie un dictionnaire dont les clés
sont les étiquettes et les valeurs sont les données étiquetées par cette étiquette.

Exercice 14. Échantillons

On peut finir par implémenter une fonction echantillons(donnees: list, etiquettes: list) qui
prend en entrée les données et les étiquettes à exploiter et renvoie un tuple de quatre listes, d_tr,
l_tr, d_test, l_test qui contiennent respectivement : les données de l’échantillon d’entraînement,
les étiquettes correspondantes, les données de l’échantillon de test et les étiquettes correspondantes.

Pour générer ces échantillons on :
1. groupe les données par étiquettes ;
2. on sélectionne 80% des données pour chaque étiquettes ;
3. on réassemble les données d’entraînements d’un coté et celles de test de l’autre.

Lycée Gustave Eiffel Bordeaux 4 itc-eiffel@sjaziri.fr

https://fr.wikipedia.org/wiki/Tri_%C3%A0_bulles
https://docs.python.org/3/library/random.html#random.sample

KNN vs. les Sup ITC 2025/2026

Exercice 15. Sauvegarde

Sauvegarder les échantillons produits dans des fichiers pour être réutilisé plus tard. On peut ainsi
essayer plusieurs échantillons pour essayer de garder le meilleur échantillon d’entraînement.

Lycée Gustave Eiffel Bordeaux 5 itc-eiffel@sjaziri.fr

	Fonctions auxiliaires
	Chargement des données.
	Distances

	KNN
	Plus proche
	Stratégie majoritaire
	Stratégie moyenne
	Stratégie moyenne pondérée

	Analyse des résultats
	Matrice de confusion
	Taux d'erreur empirique
	Erreur quadratique moyenne
	Statistiques

	Sélection préalables des données
	Tri à bulles
	Sélection aléatoire
	GROUP BY label
	Échantillons
	Sauvegarde

